Search

A molecular understanding of alphavirus entry and antibody protection - Nature.com

deweweko.blogspot.com

Abstract

Alphaviruses are arthropod-transmitted RNA viruses that cause epidemics of human infection and disease on a global scale. These viruses are classified as either arthritogenic or encephalitic based on their genetic relatedness and the clinical syndromes they cause. Although there are currently no approved therapeutics or vaccines against alphaviruses, passive transfer of monoclonal antibodies confers protection in animal models. This Review highlights recent advances in our understanding of the host factors required for alphavirus entry, the mechanisms of action by which protective antibodies inhibit different steps in the alphavirus infection cycle and candidate alphavirus vaccines currently under clinical evaluation that focus on humoral immunity. A comprehensive understanding of alphavirus entry and antibody-mediated protection may inform the development of new classes of countermeasures for these emerging viruses.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Alphavirus structure and entry mechanisms.
Fig. 2: Neutralizing and non-neutralizing monoclonal antibody epitopes on the alphavirus p62–E1 heterotrimer.

References

  1. Suhrbier, A., Jaffar-Bandjee, M. C. & Gasque, P. Arthritogenic alphaviruses — an overview. Nat. Rev. Rheumatol. 8, 420–429 (2012).

    CAS  Google Scholar 

  2. Carrera, J. P. et al. Eastern equine encephalitis in Latin America. N. Engl. J. Med. 369, 732–744 (2013).

    CAS  Google Scholar 

  3. Morens, D. M., Folkers, G. K. & Fauci, A. S. Eastern equine encephalitis virus — another emergent arbovirus in the United States. N. Engl. J. Med. 381, 1989–1992 (2019).

    Google Scholar 

  4. Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022).

    CAS  Google Scholar 

  5. Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antivir. Res. 85, 328–345 (2010).

    CAS  Google Scholar 

  6. Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 3, e263 (2006).

    Google Scholar 

  7. Rezza, G. Dengue and chikungunya: long-distance spread and outbreaks in naive areas. Pathog. Glob. Health 108, 349–355 (2014).

    Google Scholar 

  8. Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).

    CAS  Google Scholar 

  9. Aguilar-Luis, M. A. et al. An emerging public health threat: Mayaro virus increases its distribution in Peru. Int. J. Infect. Dis. 92, 253–258 (2020).

    CAS  Google Scholar 

  10. Sidwell, R. W. & Smee, D. F. Viruses of the Bunya- and Togaviridae families: potential as bioterrorism agents and means of control. Antivir. Res. 57, 101–111 (2003).

    CAS  Google Scholar 

  11. Weaver, S. C. et al. Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. VEE Study Group. Lancet 348, 436–440 (1996).

    CAS  Google Scholar 

  12. Torres-Ruesta, A., Chee, R. S. & Ng, L. F. P. Insights into antibody-mediated alphavirus immunity and vaccine development landscape. Microorganisms https://doi.org/10.3390/microorganisms9050899 (2021).

    Article  Google Scholar 

  13. Kafai, N. M., Diamond, M. S. & Fox, J. M. Distinct cellular tropism and immune responses to alphavirus infection. Annu. Rev. Immunol. 40, 615–649 (2022).

    Google Scholar 

  14. Holmes, A. C., Basore, K., Fremont, D. H. & Diamond, M. S. A molecular understanding of alphavirus entry. PLoS Pathog. 16, e1008876 (2020).

    CAS  Google Scholar 

  15. Voss, J. E. et al. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709–712 (2010).

    CAS  Google Scholar 

  16. Li, L., Jose, J., Xiang, Y., Kuhn, R. J. & Rossmann, M. G. Structural changes of envelope proteins during alphavirus fusion. Nature 468, 705–708 (2010).

    CAS  Google Scholar 

  17. Snyder, J. E. et al. Functional characterization of the alphavirus TF protein. J. Virol. 87, 8511–8523 (2013).

    CAS  Google Scholar 

  18. Jose, J., Snyder, J. E. & Kuhn, R. J. A structural and functional perspective of alphavirus replication and assembly. Fut. Microbiol. 4, 837–856 (2009).

    CAS  Google Scholar 

  19. Hasan, S. S. et al. Cryo-EM structures of Eastern equine encephalitis virus reveal mechanisms of virus disassembly and antibody neutralization. Cell Rep. 25, 3136–3147.e5 (2018).

    CAS  Google Scholar 

  20. Basore, K. et al. Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell 177, 1725–1737.e16 (2019).

    CAS  Google Scholar 

  21. Zhang, X., Fugere, M., Day, R. & Kielian, M. Furin processing and proteolytic activation of Semliki Forest virus. J. Virol. 77, 2981–2989 (2003).

    CAS  Google Scholar 

  22. de Curtis, I. & Simons, K. Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. Proc. Natl Acad. Sci. USA 85, 8052–8056 (1988).

    Google Scholar 

  23. Uchime, O., Fields, W. & Kielian, M. The role of E3 in pH protection during alphavirus assembly and exit. J. Virol. 87, 10255–10262 (2013).

    CAS  Google Scholar 

  24. Sjöberg, M., Lindqvist, B. & Garoff, H. Activation of the alphavirus spike protein is suppressed by bound E3. J. Virol. 85, 5644–5650 (2011).

    Google Scholar 

  25. Snyder, A. J. & Mukhopadhyay, S. The alphavirus E3 glycoprotein functions in a clade-specific manner. J. Virol. 86, 13609–13620 (2012).

    CAS  Google Scholar 

  26. Chen, L. et al. Implication for alphavirus host-cell entry and assembly indicated by a 3.5A resolution cryo-EM structure. Nat. Commun. 9, 5326 (2018).

    CAS  Google Scholar 

  27. Davis, N. L., Pence, D. F., Meyer, W. J., Schmaljohn, A. L. & Johnston, R. E. Alternative forms of a strain-specific neutralizing antigenic site on the Sindbis virus E2 glycoprotein. Virology 161, 101–108 (1987).

    CAS  Google Scholar 

  28. Flynn, D. C., Olmsted, R. A., Mackenzie, J. M. Jr & Johnston, R. E. Antibody-mediated activation of Sindbis virus. Virology 166, 82–90 (1988).

    CAS  Google Scholar 

  29. Meyer, W. J. & Johnston, R. E. Structural rearrangement of infecting Sindbis virions at the cell surface: mapping of newly accessible epitopes. J. Virol. 67, 5117–5125 (1993).

    CAS  Google Scholar 

  30. Smith, T. J. et al. Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. Proc. Natl Acad. Sci. USA 92, 10648–10652 (1995).

    CAS  Google Scholar 

  31. Mukhopadhyay, S. et al. Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses. Structure 14, 63–73 (2006).

    CAS  Google Scholar 

  32. Ubol, S. & Griffin, D. E. Identification of a putative alphavirus receptor on mouse neural cells. J. Virol. 65, 6913–6921 (1991).

    CAS  Google Scholar 

  33. Vrati, S., Kerr, P. J., Weir, R. C. & Dalgarno, L. Entry kinetics and mouse virulence of Ross River virus mutants altered in neutralization epitopes. J. Virol. 70, 1745–1750 (1996).

    CAS  Google Scholar 

  34. Song, H. et al. Molecular basis of arthritogenic alphavirus receptor MXRA8 binding to chikungunya virus envelope protein. Cell 177, 1714–1724.e12 (2019).

    CAS  Google Scholar 

  35. Zhang, R. et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557, 570–574 (2018).

    CAS  Google Scholar 

  36. Ramsey, J. & Mukhopadhyay, S. Disentangling the frames, the state of research on the alphavirus 6K and TF proteins. Viruses https://doi.org/10.3390/v9080228 (2017).

    Article  Google Scholar 

  37. Loewy, A., Smyth, J., von Bonsdorff, C. H., Liljestrom, P. & Schlesinger, M. J. The 6-kilodalton membrane protein of Semliki Forest virus is involved in the budding process. J. Virol. 69, 469–475 (1995).

    CAS  Google Scholar 

  38. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).

    CAS  Google Scholar 

  39. Roussel, A. et al. Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14, 75–86 (2006).

    CAS  Google Scholar 

  40. Gibbons, D. L. et al. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Cell 114, 573–583 (2003).

    CAS  Google Scholar 

  41. Gibbons, D. L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).

    CAS  Google Scholar 

  42. Jin, J. et al. Neutralizing antibodies inhibit chikungunya virus budding at the plasma membrane. Cell Host Microbe 24, 417–428.e5 (2018).

    CAS  Google Scholar 

  43. Soonsawad, P. et al. Structural evidence of glycoprotein assembly in cellular membrane compartments prior to alphavirus budding. J. Virol. 84, 11145–11151 (2010).

    CAS  Google Scholar 

  44. Jose, J., Taylor, A. B. & Kuhn, R. J. Spatial and temporal analysis of alphavirus replication and assembly in mammalian and mosquito cells. mBio https://doi.org/10.1128/mBio.02294-16 (2017).

    Article  Google Scholar 

  45. Silva, L. A. et al. A single-amino-acid polymorphism in chikungunya virus e2 glycoprotein influences glycosaminoglycan utilization. J. Virol. 88, 2385–2397 (2014).

    Google Scholar 

  46. Tanaka, A. et al. Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection. J. Virol. https://doi.org/10.1128/jvi.00432-17 (2017).

    Article  Google Scholar 

  47. Zhang, W., Heil, M., Kuhn, R. J. & Baker, T. S. Heparin binding sites on Ross River virus revealed by electron cryo-microscopy. Virology 332, 511–518 (2005).

    CAS  Google Scholar 

  48. Byrnes, A. P. & Griffin, D. E. Binding of Sindbis virus to cell surface heparan sulfate. J. Virol. 72, 7349–7356 (1998).

    CAS  Google Scholar 

  49. Gardner, C. L., Ebel, G. D., Ryman, K. D. & Klimstra, W. B. Heparan sulfate binding by natural Eastern equine encephalitis viruses promotes neurovirulence. Proc. Natl Acad. Sci. USA 108, 16026–16031 (2011).

    CAS  Google Scholar 

  50. Gardner, C. L. et al. Natural variation in the heparan sulfate binding domain of the Eastern equine encephalitis virus E2 glycoprotein alters interactions with cell surfaces and virulence in mice. J. Virol. 87, 8582–8590 (2013).

    CAS  Google Scholar 

  51. Bernard, K. A., Klimstra, W. B. & Johnston, R. E. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276, 93–103 (2000).

    CAS  Google Scholar 

  52. Klimstra, W. B., Ryman, K. D. & Johnston, R. E. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J. Virol. 72, 7357–7366 (1998).

    CAS  Google Scholar 

  53. Ashbrook, A. W. et al. Residue 82 of the chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J. Virol. 88, 12180–12192 (2014).

    Google Scholar 

  54. Klimstra, W. B., Nangle, E. M., Smith, M. S., Yurochko, A. D. & Ryman, K. D. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J. Virol. 77, 12022–12032 (2003).

    CAS  Google Scholar 

  55. Feinberg, H., Mitchell, D. A., Drickamer, K. & Weis, W. I. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163–2166 (2001).

    CAS  Google Scholar 

  56. Jemielity, S. et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013).

    CAS  Google Scholar 

  57. Moller-Tank, S., Kondratowicz, A. S., Davey, R. A., Rennert, P. D. & Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 87, 8327–8341 (2013).

    CAS  Google Scholar 

  58. Kirui, J. et al. The phosphatidylserine receptor TIM-1 enhances authentic chikungunya virus cell entry. Cells https://doi.org/10.3390/cells10071828 (2021).

    Article  Google Scholar 

  59. Wang, K. S., Kuhn, R. J., Strauss, E. G., Ou, S. & Strauss, J. H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 66, 4992–5001 (1992).

    CAS  Google Scholar 

  60. Ludwig, G. V., Kondig, J. P. & Smith, J. F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J. Virol. 70, 5592–5599 (1996).

    CAS  Google Scholar 

  61. Wintachai, P. et al. Identification of prohibitin as a chikungunya virus receptor protein. J. Med. Virol. 84, 1757–1770 (2012).

    CAS  Google Scholar 

  62. De Caluwé, L. et al. The CD147 protein complex is involved in entry of chikungunya virus and related alphaviruses in human cells. Front. Microbiol. 12, 615165 (2021).

    Google Scholar 

  63. Helenius, A. et al. Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus. Proc. Natl Acad. Sci. USA 75, 3846–3850 (1978).

    CAS  Google Scholar 

  64. Rose, P. P. et al. Natural resistance-associated macrophage protein is a cellular receptor for Sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10, 97–104 (2011).

    CAS  Google Scholar 

  65. Kim, A. S. et al. An evolutionary insertion in the Mxra8 receptor-binding site confers resistance to alphavirus infection and pathogenesis. Cell Host Microbe 27, 428–440.e9 (2020).

    CAS  Google Scholar 

  66. Zhang, R. et al. Expression of the Mxra8 receptor promotes alphavirus infection and pathogenesis in mice and Drosophila. Cell Rep. 28, 2647–2658.e5 (2019).

    CAS  Google Scholar 

  67. Ma, H. et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 588, 308–314 (2020).

    CAS  Google Scholar 

  68. Basore, K. et al. Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature 598, 672–676 (2021).

    Google Scholar 

  69. Ma, B., Huang, C., Ma, J., Xiang, Y. & Zhang, X. Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature 598, 677–681 (2021).

    Google Scholar 

  70. Clark, L. E. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 602, 475–480 (2022).

    CAS  Google Scholar 

  71. Levin, M. J. et al. Intramuscular AZD7442 (tixagevimab–cilgavimab) for prevention of Covid-19. N. Engl. J. Med. 386, 2188–2200 (2022).

    CAS  Google Scholar 

  72. Gupta, A. et al. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 385, 1941–1950 (2021).

    CAS  Google Scholar 

  73. Robbie, G. J. et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob. Agents Chemother. 57, 6147–6153 (2013).

    CAS  Google Scholar 

  74. Boere, W. A., Benaissa-Trouw, B. J., Harmsen, M., Kraaijeveld, C. A. & Snippe, H. Neutralizing and non-neutralizing monoclonal antibodies to the E2 glycoprotein of Semliki Forest virus can protect mice from lethal encephalitis. J. Gen. Virol. 64, 1405–1408 (1983).

    CAS  Google Scholar 

  75. Boere, W. A. et al. Identification of distinct antigenic determinants on Semliki Forest virus by using monoclonal antibodies with different antiviral activities. J. Virol. 52, 575–582 (1984).

    CAS  Google Scholar 

  76. Stanley, J., Cooper, S. J. & Griffin, D. E. Alphavirus neurovirulence: monoclonal antibodies discriminating wild-type from neuroadapted Sindbis virus. J. Virol. 56, 110–119 (1985).

    CAS  Google Scholar 

  77. Stec, D. S., Waddell, A., Schmaljohn, C. S., Cole, G. A. & Schmaljohn, A. L. Antibody-selected variation and reversion in Sindbis virus neutralization epitopes. J. Virol. 57, 715–720 (1986).

    CAS  Google Scholar 

  78. Vrati, S., Fernon, C. A., Dalgarno, L. & Weir, R. C. Location of a major antigenic site involved in Ross River virus neutralization. Virology 162, 346–353 (1988).

    CAS  Google Scholar 

  79. Roehrig, J. T., Day, J. W. & Kinney, R. M. Antigenic analysis of the surface glycoproteins of a Venezuelan equine encephalomyelitis virus (TC-83) using monoclonal antibodies. Virology 118, 269–278 (1982).

    CAS  Google Scholar 

  80. Roehrig, J. T., Gorski, D. & Schlesinger, M. J. Properties of monoclonal antibodies directed against the glycoproteins of Sindbis virus. J. Gen. Virol. 59, 421–425 (1982).

    CAS  Google Scholar 

  81. Roehrig, J. T. & Mathews, J. H. The neutralization site on the E2 glycoprotein of Venezuelan equine encephalomyelitis (TC-83) virus is composed of multiple conformationally stable epitopes. Virology 142, 347–356 (1985).

    CAS  Google Scholar 

  82. Mayne, J. T., Rice, C. M., Strauss, E. G., Hunkapiller, M. W. & Strauss, J. H. Biochemical studies of the maturation of the small Sindbis virus glycoprotein E3. Virology 134, 338–357 (1984).

    CAS  Google Scholar 

  83. Parker, M. D. et al. Antibody to the E3 glycoprotein protects mice against lethal Venezuelan equine encephalitis virus infection. J. Virol. 84, 12683–12690 (2010).

    CAS  Google Scholar 

  84. Warter, L. et al. Chikungunya virus envelope-specific human monoclonal antibodies with broad neutralization potency. J. Immunol. 186, 3258–3264 (2011).

    CAS  Google Scholar 

  85. Pal, P. et al. Development of a highly protective combination monoclonal antibody therapy against chikungunya virus. PLoS Pathog. 9, e1003312 (2013).

    CAS  Google Scholar 

  86. Fox, J. M. et al. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell 163, 1095–1107 (2015).

    CAS  Google Scholar 

  87. Smith, S. A. et al. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against chikungunya virus. Cell Host Microbe 18, 86–95 (2015).

    CAS  Google Scholar 

  88. Fong, R. H. et al. Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy. J. Virol. 88, 14364–14379 (2014).

    Google Scholar 

  89. Quiroz, J. A. et al. Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathog. 15, e1008061 (2019).

    Google Scholar 

  90. Malonis, R. J. et al. Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2100104118 (2021).

    Article  Google Scholar 

  91. Goh, L. Y. et al. Neutralizing monoclonal antibodies to the E2 protein of chikungunya virus protects against disease in a mouse model. Clin. Immunol. 149, 487–497 (2013).

    CAS  Google Scholar 

  92. Powell, L. A. et al. Human monoclonal antibodies against Ross River virus target epitopes within the E2 protein and protect against disease. PLoS Pathog. 16, e1008517 (2020).

    CAS  Google Scholar 

  93. Powell, L. A. et al. Human mAbs broadly protect against arthritogenic alphaviruses by recognizing conserved elements of the Mxra8 receptor-binding site. Cell Host Microbe 28, 699–711.e7 (2020).

    CAS  Google Scholar 

  94. Earnest, J. T. et al. Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J. Exp. Med. 216, 2282–2301 (2019).

    CAS  Google Scholar 

  95. Kim, A. S. et al. Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nat. Microbiol. 4, 187–197 (2019).

    CAS  Google Scholar 

  96. Williamson, L. E. et al. Human antibodies protect against aerosolized Eastern equine encephalitis virus infection. Cell 183, 1884–1900.e23 (2020).

    CAS  Google Scholar 

  97. Liu, J. L., Shriver-Lake, L. C., Zabetakis, D., Goldman, E. R. & Anderson, G. P. Selection of single-domain antibodies towards Western equine encephalitis virus. Antibodies https://doi.org/10.3390/antib7040044 (2018).

    Article  Google Scholar 

  98. Kafai, N. M. et al. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J. Exp. Med. https://doi.org/10.1084/jem.20212532 (2022).

    Article  Google Scholar 

  99. Porta, J. et al. Locking and blocking the viral landscape of an alphavirus with neutralizing antibodies. J. Virol. 88, 9616–9623 (2014).

    Google Scholar 

  100. Sun, S. et al. Structural analyses at pseudo atomic resolution of chikungunya virus and antibodies show mechanisms of neutralization. eLife 2, e00435 (2013).

    Google Scholar 

  101. Johnston, R. E. & Smith, J. F. Selection for accelerated penetration in cell culture coselects for attenuated mutants of Venezuelan equine encephalitis virus. Virology 162, 437–443 (1988).

    CAS  Google Scholar 

  102. Russell, D. L., Dalrymple, J. M. & Johnston, R. E. Sindbis virus mutations which coordinately affect glycoprotein processing, penetration, and virulence in mice. J. Virol. 63, 1619–1629 (1989).

    CAS  Google Scholar 

  103. Pence, D. F., Davis, N. L. & Johnston, R. E. Antigenic and genetic characterization of Sindbis virus monoclonal antibody escape mutants which define a pathogenesis domain on glycoprotein E2. Virology 175, 41–49 (1990).

    CAS  Google Scholar 

  104. Pal, P. et al. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J. Virol. 88, 8213–8226 (2014).

    Google Scholar 

  105. EnCheng, S. et al. Analysis of murine B-cell epitopes on Eastern equine encephalitis virus glycoprotein E2. Appl. Microbiol. Biotechnol. 97, 6359–6372 (2013).

    Google Scholar 

  106. Agapov, E. V. et al. Localization of four antigenic sites involved in Venezuelan equine encephalomyelitis virus protection. Arch. Virol. 139, 173–181 (1994).

    CAS  Google Scholar 

  107. Earnest, J. T. et al. The mechanistic basis of protection by non-neutralizing anti-alphavirus antibodies. Cell Rep. 35, 108962 (2021).

    CAS  Google Scholar 

  108. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2018).

    CAS  Google Scholar 

  109. Tao, M. H. & Morrison, S. L. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143, 2595–2601 (1989).

    CAS  Google Scholar 

  110. Després, P., Griffin, J. W. & Griffin, D. E. Effects of anti-E2 monoclonal antibody on Sindbis virus replication in AT3 cells expressing bcl-2. J. Virol. 69, 7006–7014 (1995).

    Google Scholar 

  111. Levine, B. et al. Antibody-mediated clearance of alphavirus infection from neurons. Science 254, 856–860 (1991).

    CAS  Google Scholar 

  112. Navaratnarajah, C. K. & Kuhn, R. J. Functional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis. Virology 363, 134–147 (2007).

    CAS  Google Scholar 

  113. Fox, J. M. et al. A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice. PLoS Pathog. 16, e1008743 (2020).

    CAS  Google Scholar 

  114. Lee, C. Y. et al. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants. PLoS Pathog. 7, e1002390 (2011).

    CAS  Google Scholar 

  115. Strauss, E. G., Stec, D. S., Schmaljohn, A. L. & Strauss, J. H. Identification of antigenically important domains in the glycoproteins of Sindbis virus by analysis of antibody escape variants. J. Virol. 65, 4654–4664 (1991).

    CAS  Google Scholar 

  116. Roehrig, J. T. et al. Identification of monoclonal antibodies capable of differentiating antigenic varieties of Eastern equine encephalitis viruses. Am. J. Trop. Med. Hyg. 42, 394–398 (1990).

    CAS  Google Scholar 

  117. Mendoza, Q. P., Stanley, J. & Griffin, D. E. Monoclonal antibodies to the E1 and E2 glycoproteins of Sindbis virus: definition of epitopes and efficiency of protection from fatal encephalitis. J. Gen. Virol. 69, 3015–3022 (1988).

    CAS  Google Scholar 

  118. Schmaljohn, A. L., Johnson, E. D., Dalrymple, J. M. & Cole, G. A. Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. Nature 297, 70–72 (1982).

    CAS  Google Scholar 

  119. Schmaljohn, A. L., Kokubun, K. M. & Cole, G. A. Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus E1 glycoprotein. Virology 130, 144–154 (1983).

    CAS  Google Scholar 

  120. Stanley, J., Cooper, S. J. & Griffin, D. E. Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice. J. Virol. 58, 107–115 (1986).

    CAS  Google Scholar 

  121. Kim, A. S. et al. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 184, 4414–4429.e19 (2021).

    CAS  Google Scholar 

  122. Williamson, L. E. et al. Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell 184, 4430–4446.e22 (2021).

    CAS  Google Scholar 

  123. Calvert, A. E. et al. Exposing cryptic epitopes on the Venezuelan equine encephalitis virus E1 glycoprotein prior to treatment with alphavirus cross-reactive monoclonal antibody allows blockage of replication early in infection. Virology 565, 13–21 (2022).

    CAS  Google Scholar 

  124. Fox, J. M. et al. Optimal therapeutic activity of monoclonal antibodies against chikungunya virus requires Fc-FcγR interaction on monocytes. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aav5062 (2019).

    Article  Google Scholar 

  125. Tuekprakhon, A. et al. Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: promising candidates for antibody-based rapid diagnostic test development. PLoS ONE 13, e0208851 (2018).

    CAS  Google Scholar 

  126. Marston, H. D., Paules, C. I. & Fauci, A. S. Monoclonal antibodies for emerging infectious diseases — borrowing from history. N. Engl. J. Med. 378, 1469–1472 (2018).

    CAS  Google Scholar 

  127. Simoes, E. A. et al. Palivizumab prophylaxis, respiratory syncytial virus, and subsequent recurrent wheezing. J. Pediatr. 151, 34–42 (2007).

    CAS  Google Scholar 

  128. Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020).

    CAS  Google Scholar 

  129. Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    CAS  Google Scholar 

  130. Broeckel, R. et al. Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques. PLoS Negl. Trop. Dis. 11, e0005637 (2017).

    Google Scholar 

  131. Burke, C. W. et al. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog. 15, e1008157 (2019).

    Google Scholar 

  132. Kose, N. et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaw6647 (2019).

    Article  Google Scholar 

  133. August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against chikungunya virus. Nat. Med. 27, 2224–2233 (2021).

    CAS  Google Scholar 

  134. Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383, 1544–1555 (2020).

    CAS  Google Scholar 

  135. Gorchakov, R. et al. Attenuation of chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J. Virol. 86, 6084–6096 (2012).

    CAS  Google Scholar 

  136. Edelman, R. et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685 (2000).

    CAS  Google Scholar 

  137. Pittman, P. R. et al. Long-term duration of detectable neutralizing antibodies after administration of live-attenuated VEE vaccine and following booster vaccination with inactivated VEE vaccine. Vaccine 14, 337–343 (1996).

    CAS  Google Scholar 

  138. Paessler, S. et al. Recombinant Sindbis/Venezuelan equine encephalitis virus is highly attenuated and immunogenic. J. Virol. 77, 9278–9286 (2003).

    CAS  Google Scholar 

  139. Paessler, S. et al. Replication and clearance of Venezuelan equine encephalitis virus from the brains of animals vaccinated with chimeric SIN/VEE viruses. J. Virol. 80, 2784–2796 (2006).

    CAS  Google Scholar 

  140. Rossi, S. L. et al. IRES-containing VEEV vaccine protects cynomolgus macaques from IE Venezuelan equine encephalitis virus aerosol challenge. PLoS Negl. Trop. Dis. 9, e0003797 (2015).

    Google Scholar 

  141. Trobaugh, D. W., Sun, C., Dunn, M. D., Reed, D. S. & Klimstra, W. B. Rational design of a live-attenuated Eastern equine encephalitis virus vaccine through informed mutation of virulence determinants. PLoS Pathog. 15, e1007584 (2019).

    CAS  Google Scholar 

  142. Tucker, P. C. & Griffin, D. E. Mechanism of altered Sindbis virus neurovirulence associated with a single-amino-acid change in the E2 glycoprotein. J. Virol. 65, 1551–1557 (1991).

    CAS  Google Scholar 

  143. Wang, E. et al. Chimeric Sindbis/Eastern equine encephalitis vaccine candidates are highly attenuated and immunogenic in mice. Vaccine 25, 7573–7581 (2007).

    CAS  Google Scholar 

  144. Plante, K. et al. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog. 7, e1002142 (2011).

    CAS  Google Scholar 

  145. Roques, P. et al. Attenuated and vectored vaccines protect nonhuman primates against chikungunya virus. JCI Insight 2, e83527 (2017).

    Google Scholar 

  146. Robinson, D. M., Cole, F. E. Jr, McManus, A. T. & Pedersen, C. E. Jr. Inactivated Mayaro vaccine produced in human diploid cell cultures. Mil. Med. 141, 163–166 (1976).

    CAS  Google Scholar 

  147. Tiwari, M. et al. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of chikungunya virus. Vaccine 27, 2513–2522 (2009).

    CAS  Google Scholar 

  148. Akahata, W. et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338 (2010).

    CAS  Google Scholar 

  149. Goo, L. et al. A virus-like particle vaccine elicits broad neutralizing antibody responses in humans to all chikungunya virus genotypes. J. Infect. Dis. 214, 1487–1491 (2016).

    CAS  Google Scholar 

  150. Ko, S. Y. et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aav3113 (2019).

    Article  Google Scholar 

  151. Brandler, S. et al. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine 31, 3718–3725 (2013).

    CAS  Google Scholar 

  152. Ramsauer, K. et al. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect. Dis. 15, 519–527 (2015).

    CAS  Google Scholar 

  153. Wang, D. et al. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine 29, 2803–2809 (2011).

    CAS  Google Scholar 

  154. Henning, L., Endt, K., Steigerwald, R., Anderson, M. & Volkmann, A. A monovalent and trivalent MVA-based vaccine completely protects mice against lethal Venezuelan, Western, and Eastern equine encephalitis virus aerosol challenge. Front. Immunol. 11, 598847 (2020).

    CAS  Google Scholar 

  155. Tatsis, N. et al. Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood 110, 1916–1923 (2007).

    CAS  Google Scholar 

  156. Chang, L. J. et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet 384, 2046–2052 (2014).

    CAS  Google Scholar 

  157. Chen, G. L. et al. Effect of a chikungunya virus-like particle vaccine on safety and tolerability outcomes: a randomized clinical trial. JAMA 323, 1369–1377 (2020).

    CAS  Google Scholar 

  158. Reisinger, E. C. et al. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet 392, 2718–2727 (2019).

    Google Scholar 

  159. Folegatti, P. M. et al. A single dose of ChAdOx1 Chik vaccine induces neutralizing antibodies against four chikungunya virus lineages in a phase 1 clinical trial. Nat. Commun. 12, 4636 (2021).

    CAS  Google Scholar 

  160. Paessler, S. & Weaver, S. C. Vaccines for Venezuelan equine encephalitis. Vaccine 27, D80–D85 (2009).

    CAS  Google Scholar 

  161. Pierson, B. C. et al. Safety and immunogenicity of an inactivated Eastern equine encephalitis virus vaccine. Vaccine 39, 2780–2790 (2021).

    CAS  Google Scholar 

  162. Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 3, 445–450 (2000).

    CAS  Google Scholar 

  163. Santiago, C. et al. Structures of T cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity 26, 299–310 (2007).

    CAS  Google Scholar 

  164. Sasaki, T. et al. Structural basis for Gas6-Axl signalling. EMBO J. 25, 80–87 (2006).

    CAS  Google Scholar 

  165. Soumahoro, M. K. et al. The chikungunya epidemic on La Réunion Island in 2005–2006: a cost-of-illness study. PLoS Negl. Trop. Dis. 5, e1197 (2011).

    Google Scholar 

  166. Feldstein, L. R. et al. Estimating the cost of illness and burden of disease associated with the 2014-2015 chikungunya outbreak in the U.S. Virgin Islands. PLoS Negl. Trop. Dis. 13, e0007563 (2019).

    Google Scholar 

  167. Semenza, J. C. & Menne, B. Climate change and infectious diseases in Europe. Lancet Infect. Dis. 9, 365–375 (2009).

    Google Scholar 

  168. Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201 (2007).

    Google Scholar 

  169. Suhrbier, A. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat. Rev. Rheumatol. 15, 597–611 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Fox for insightful discussions and comments. Research in the authors’ laboratories was supported by US NIH grants R01 AI143673, U19 AI142790, R01 AI164653, R01 AI141436 and R01 AI127513 (to M.S.D.), and T32 AI172293 (to A.S.K.). A.S.K. acknowledges support from Open Philanthropy and the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.S.K. and M.S.D. contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael S. Diamond.

Ethics declarations

Competing interests

M.S.D. is a consultant for Inbios, Vir Biotechnology, Senda Biosciences, Moderna, and Immunome. The Diamond laboratory has received unrelated funding support in sponsored research agreements from Vir Biotechnology, Moderna, Immunome and Emergent BioSolutions. A.S.K. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, A.S., Diamond, M.S. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol (2022). https://ift.tt/qyiMY1H

Download citation

  • Accepted:

  • Published:

  • DOI: https://ift.tt/qyiMY1H

Adblock test (Why?)



"entry" - Google News
December 06, 2022 at 09:59PM
https://ift.tt/bnmYxAB

A molecular understanding of alphavirus entry and antibody protection - Nature.com
"entry" - Google News
https://ift.tt/7JRp4ZF
https://ift.tt/eIX9jA0

Bagikan Berita Ini

0 Response to "A molecular understanding of alphavirus entry and antibody protection - Nature.com"

Post a Comment

Powered by Blogger.